Friendly Measures, Homogeneous Flows and Dirichlet’s Theorem

نویسندگان

  • DMITRY KLEINBOCK
  • BARAK WEISS
چکیده

Let m,n be positive integers, and denote byMm,n the space of m×n matrices with real entries. Dirichlet’s Theorem (hereafter abbreviated by ‘DT’) on simultaneous diophantine approximation states that for any A ∈ Mm,n (viewed as a system of m linear forms in n variables) and for any T > 1 there exist q = (q1, . . . , qn) ∈ Z r {0} and p = (p1, . . . , pm) ∈ Z satisfying the following system of inequalities: ‖Aq− p‖ < 1/T and ‖q‖ ≤ T . (1.1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirichlet’s Theorem on Diophantine Approximation and Homogeneous Flows

Given an m×n real matrix Y , an unbounded set T of parameters t = (t1, . . . , tm+n) ∈ R m+n + with ∑m i=1 ti = ∑n j=1 tm+j and 0 < ε ≤ 1, we say that Dirichlet’s Theorem can be ε-improved for Y along T if for every sufficiently large t ∈ T there are nonzero q ∈ Z and p ∈ Z such that { |Yiq− pi| < εe −ti , i = 1, . . . ,m |qj | < εe tm+j , j = 1, . . . , n (here Y1, . . . , Ym are rows of Y ). ...

متن کامل

Equidistribution of Expanding Translates of Curves and Dirichlet’s Theorem on Diophantine Approximation

We show that for almost all points on any analytic curve on R which is not contained in a proper affine subspace, the Dirichlet’s theorem on simultaneous approximation, as well as its dual result for simultaneous approximation of linear forms, cannot be improved. The result is obtained by proving asymptotic equidistribution of evolution of a curve on a strongly unstable leaf under certain parti...

متن کامل

Equidistribution of Expanding Measures with Local Maximal Dimension and Diophantine Approximation

We consider improvements of Dirichlet’s Theorem on space of matrices Mm,n(R). It is shown that for a certain class of fractals K ⊂ [0, 1] ⊂ Mm,n(R) of local maximal dimension Dirichlet’s Theorem cannot be improved almost everywhere. This is shown using entropy and dynamics on homogeneous spaces of Lie groups.

متن کامل

Invariant Measures for Solvable Groups and Diophantine Approximation

We show that if L is a line in the plane containing a badly approximable vector, then almost every point in L does not admit an improvement in Dirichlet’s theorem. Our proof relies on a measure classification result for certain measures invariant under a non-abelian two dimensional group on the homogeneous space SL3(R)/ SL3(Z). Using the measure classification theorem, we reprove a result of Sh...

متن کامل

Equidistribution of Translates of Curves on Homogeneous Spaces and Dirichlet’s Approximation

Understanding the limiting distributions of translates of measures on submanifolds of homogeneous spaces of Lie groups lead to very interesting number theoretic and geometric applications. We explore this theme in various generalities, and in specific cases. Our main tools are Ratner’s theorems on unipotent flows, nondivergence theorems of Dani and Margulis, and dynamics of linear actions of se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005